Hydrogen and Formate Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese by Alteromonas putrefaciens.
نویسندگان
چکیده
The ability of Alteromonas putrefaciens to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory Fe(III) or Mn(IV) reduction was investigated. A. putrefaciens grew with hydrogen, formate, lactate, or pyruvate as the sole electron donor and Fe(III) as the sole electron acceptor. Lactate and pyruvate were oxidized to acetate, which was not metabolized further. With Fe(III) as the electron acceptor, A. putrefaciens had a high affinity for hydrogen and formate and metabolized hydrogen at partial pressures that were 25-fold lower than those of hydrogen that can be metabolized by pure cultures of sulfate reducers or methanogens. The electron donors for Fe(III) reduction also supported Mn(IV) reduction. The electron donors for Fe(III) and Mn(IV) reduction and the inability of A. putrefaciens to completely oxidize multicarbon substrates to carbon dioxide distinguish A. putrefaciens from GS-15, the only other organism that is known to obtain energy for growth by coupling the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). The ability of A. putrefaciens to reduce large quantities of Fe(III) and to grow in a defined medium distinguishes it from a Pseudomonas sp., which is the only other known hydrogen-oxidizing, Fe(III)-reducing microorganism. Furthermore, A. putrefaciens is the first organism that is known to grow with hydrogen as the electron donor and Mn(IV) as the electron acceptor and is the first organism that is known to couple the oxidation of formate to the reduction of Fe(III) or Mn(IV). Thus, A. putrefaciens provides a much needed microbial model for key reactions in the oxidation of sediment organic matter coupled to Fe(III) and Mn(IV) reduction.
منابع مشابه
Amino acid and lactate catabolism in trimethylamine oxide respiration of Alteromonas putrefaciens NCMB 1735.
The nonfermentative Alteromonas putrefaciens NCMB 1735 grew anaerobically in defined media with trimethylamine oxide as external electron acceptor. All amino acids tested, except taurine and those with a cyclic or aromatic side chain, were utilized during trimethylamine oxide-dependent anaerobic growth. Lactate, serine, and cysteine (which are easily converted to pyruvate) and glutamate and asp...
متن کاملDesign and application of rRNA-targeted oligonucleotide probes for the dissimilatory iron- and manganese-reducing bacterium Shewanella putrefaciens.
A 16S rRNA-targeted oligonucleotide probe specific for the iron (Fe3+)- and manganese (Mn4+)-reducing bacterium Shewanella putrefaciens was constructed and tested in both laboratory- and field-based hybridization experiments. The radioactively labeled probe was used to detect S. putrefaciens in field samples collected from the water column and sediments of Oneida Lake in New York and its major ...
متن کاملDissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene.
Shewanella putrefaciens strain 200 respires anaerobically on a wide range of compounds as the sole terminal electron acceptor, including ferric iron [Fe(III)] and manganese oxide [Mn(IV)]. Previous studies demonstrated that a 23.3-kb S. putrefaciens wild-type DNA fragment conferred metal reduction capability to a set of respiratory mutants with impaired Fe(III) and Mn(IV) reduction activities (...
متن کاملBiogeochemical Cycles of Manganese and Iron at the Oxic-Anoxic Transition of a Stratified Marine Basin (Orca Basin, Gulf of Mexico)
Chemical distributions and microbial culture data are combined to identify the biogeochemical pathways that control the cycles of manganese and iron at the oxicanoxic transition of the Orca Basin. The redox transition coincides with an increase in salinity from 35 to 260‰; hence, mixing diagrams are used to constrain the salinity ranges over which consumption or production of solute species tak...
متن کاملInhibition of biological reductive dissolution of hematite by ferrous iron.
Bacterial dissimilatory iron reduction is self-inhibited by the production of ferrous [Fe(II)] iron resulting in diminished iron reduction as Fe(II) accumulates. Experiments were conducted to investigate the mechanisms of Fe(II) inhibition employing the dissimilatory metal-reducing bacterium Shewanella putrefaciens strain CN32 under nongrowth conditions in a system designed to minimize precipit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 55 3 شماره
صفحات -
تاریخ انتشار 1989